

Environmental applications

Dagmara Chmielewska-Śmietanko

iiA's Leadership Program, Reims, 24-28 April 2023

Environment

Radiation Processing as an Eco-friendly solution:

- No secondary waste generation;
- No catalysts, no heating and easy for automation;
- Experience in pilot plants and several industrial plants;
- Economical advantages in capital cost and O&M cost;
- The process by-product is used as agricultural fertilizer;
- Can be used as a retrofit or combined with the existing process

Listende of Nuclear Chemistry and Technology IAEA Collaborating Centre for Radiation Processing and Industrial Dosimetry 281-284

Flue gas treatment

Flue gas treatment

The dependence of SO₂ and NO_x removal efficiency on dose

Flue gas treatment

Pilot and industrial facilities for flue gas treatment

Place	Flow rate	Power [MW/]	Accelerator	SO ₂ /NO _x
Indianapolis, USA (1984)	24 000	-	2x800 keV; 160 kW	1000/400
Badenwerk, Germany (1985)	20 000	-	2x300 keV; 180 kW	500/500
Kawęczyn, Poland (1990)	20 000	-	2x700 keV; 100 kW	600/250
Nagoya, Japan (1992)	12 000	-	3×800 keV; 108 kW	1000/300
Chengdu, China (1997)	300 000	90	2x800 keV; 400 mA, 640 kW	1800/400
Pomorzany, Poland (2002)	270 000	112	4×800 keV; 375 mA 1 200 kW	385/340
Nisi-Nagoya, Japan (1998)	620 000	220	6×800 keV; 500 mA 2 400 kW	-
Hangzhou, China (2002)	305 400	-	2x800 keV; 400 mA 640 kW	1800/400
Beijing, China (2005)	640 000	150	2x1 000 keV; 500 mA 1x1 000 keV; 300 mA 1 300 kW	1900/400
Svishtov, Bulgaria (2008)	600 000	120	4×900 keV; 400 mA 1 400 kW	1680/780

History of development

1987 - Laboratory unit; 400 Nm³/h, accelerator: 20kW, 2 MeV

Oil burner

ILU 6 ACCELERATOR Energy 0.5-2 MeV 20 kW Beam power Frequency 127 MHz

Schematic diagram of laboratory scale electron-beam flue gas treatment (EBFGT) installation

1-ol - fired burner 2-orifice 3-preliminary soot filter 4-sool filter

5-dosoge of water vopour 6-gas sampling point 7-armonie injection 8-process vessel

9-electron beam popelerator	13-fon
10-retention chamber	14-stock
11-bog filter	15-concrete wdl
12-gas sampling point	16-concrete door

History of development

Electrostatic precipitator 1990 – Pilot Plant PS Kawęczyn; 20 000 Nm³/h, ^{REATED} accelerators: 2 x 50 kW, 700 keV

Control room

PRODUCT

BY PAS

Two accelerators

Energy 0.7 MeV

BAGHLTER

Power 2 x 50 kW

502

PH.O

FLUE GAS

ACCELERATORS

PROCESS VESSEL

Process

vessel

Boiler; 2. Electrostatic precipitator; 3. Spray cooler; 4. Ammonia water container;
Ammonia evaporator; 6. Accelerator; 7. Reaction vessel; 8. Electrostatic precipitator

Flue gas treatment

Heavy metal content in by-product

By-product Fertilizer by-product yield: up to 700 kg/h

As	Cd	Cr	Co	РЬ	Hg	Ni	Zn	Remarks
<0.02	<0.01	0.43	0.03	1.01	<0.03	63.5	18.3	averaged values for byproducts collected by cartridge bag filter
0.24	0.09	1.61	0.03	0.54	1.41	22.80	1476	byproducts collected by ESP
			Limits fo	or heavy i	metals con	tent in N	PK fertil	izer
41	39			300	17	420	2800	US EPA CFR40 Part. 503
75	20		150	500	5	180	1350	Canadian Fertilizer Act (1996)
50	50			140	2			Polish standard
	32.2	276.8	12.9	17.8		72.3		mean values of heavy metals concentrations in fertilizers marketed in the Kingdom of Saudi Arabia

Laboratory tests for heavy oil

EBFGT at ARAMCO, Jeddah

ارامكو السعودية Saudi Aramco

Flue gas treatment

Radiation vessels construction for flue gas treatment

Flue gas treatment

Investment and operational costs

Table 2. Costs of various emission control methods for retrofit 120 MW(e) unit [14]

Emission control method	Investment cost USD/kW(e)	Annual operational cost USD/MW(e)
Wet flue gas desulphurization	120	3000
Selective catalytic reduction	110	4600
Wet FGD + SCR	230	7600
EB treatment EBFGT	160	7350

Source: A review on electron beam flue gas treatment (EBFGT) as a multicomponent air pollution control technology A. Basfar, O. I. Fageeha, N. Kunnummal, A. Chmielewski, J. Licki, A. Pawelec, Z. Zimek, J. Warych Nukleonika 2010, 55(3), 271-277

The structures of PAHs emitted from fossil fuels combustion

naphtalene

acenaphtene

anthracene

fluoranthene

pyrene

benzo(a)pyrene

dibenzo(a,h) anthracene

Flue gas treatment

Reduction of VOCs

PAHs removal efficiency and their cancergenity factor

DALL removal NILLO D-OLOU Cabruary 2000 acris E

Source: A.G Chmielewski, A Ostapczuk, Z Zimek, J Licki, K Kubica, Reduction of VOCs in flue gas from coal combustion by electron beam treatment, Radiation Physics and Chemistry, Volume 63, Issues 3–6, 2002, 653-655

Electron-beam treatment profiles of benzene(●) hexane (▲), methanol (♦), and cyclohexane (■).

- chemical pesticides, herbicides, and fungicides (agricultural wastewater)
- organic dyes
- drugs, pharmaceutical compounds
- petrochemical wastewater
- microorganisms

Source: Abdel Rahman, R.O.; Hung, Y.-T. Application of Ionizing Radiation in Wastewater Treatment: An Overview. Water 2020

Wastewater treatment

Wastewater Treatment Facility in Daegu Dyeing Industrial Complex

Location of Pilot Plant

Effluent

Reservoir

E-Beam Irradiation

B. Han et al.: Rad. Phys. Chem. 64 (1) (2002) 53

		Existing Facility	E-beam plant
Operating	Chemicals	1,367	580
cost (k\$)	Sludge	1,/12	1,005
(Electricity	497	809

Diclofenac sodium salt

Diclofenac degradation in aqueous solution under EB irradiation (ILU-6 accelerator, 1.65 MeV, 50 mA, 2 Hz, distance to window 30 cm)

	EB (5kGy)
DCF	96.27%
Cl-	45.24% , single Cl
	released 90.5%
NH4 ⁺	28.4%
CO ₂	<1%

Ballast water treatment

Motivation

In 2004 the International Maritime Organization (IMO) adopted the International Convention for the Control and Management of Ships' Ballast Water and Sediments. When the convention enters into force all ships in international traffic must eventually comply with the established discharge limits according to the D-2 standard: Ships conducting ballast water management shall discharge:

- less than 10 viable organisms per cubic metre greater than or equal to 50 micrometres in minimum dimension
- and less than 10 viable organisms per milliliter less than 50 micrometres in minimum dimension and greater than or equal to 10 micrometres in minimum dimension;
- and discharge of the indicator microbes shall not exceed the specified concentrations:
- a. Toxicogenic Vibrio cholerae (O1 and O139) with less than 1 colony forming unit (cfu) per 100 milliliters;

b. Escherichia coli less than 250 cfu per 100 milliliters;

c. Intestinal Enterococci less than 100 cfu per 100 milliliters.

Ballast water treatment

Ballast water treatment

Ballast water treatment

Geometry of Technological Solution

The thickness of the irradiated layer of wastewater is correlated with the penetration of accelerated electrons which depends on accelerator energy. Irradiation of either falling film or up-flow mode or injected wastewater stream ensures the most efficient EB utilization.

Source: Urszula Gryczka, Zbigniew Zimek, Marta Walo, Dagmara Chmielewska-Śmietanko and Sylwester Bułka, "Advanced Electron Beam (EB) Wastewater Treatment System with Low Background X-ray Intensity Generation", Appl. Sci. 2021, 11(23), 11194; https://doi.org/10.3390/app112311194

Experimental set-up

ILU 6 (INP, Russia) accelerator energy ranging from 0.2 to 2 MeV, average beam power up to 20 kW.

<u>The parameters of the beam in experiments:</u> accelerating voltage—930 keV, beam current — 1 mA, sweep width—50 cm.

Ballast water treatment

Number of the indicator microbes before and after irradiation (batch mode)

Ballast water

Sediments

	Control samples (1,2,3)	1 kGy	2.5 kGy	5 kGy		Control samples	Control samples [average]	2 kGy	2 kGy [average]	5 kGy	5 kGy [average]
					E.coli	8600	6333,3	<1	<1	<1	<1
	0700		10	10		4100		<1		<1	
E.COli	3730	410	<10	<10	[WPN/1g]	6300		<1		<1	
	4200										
[MPN/100ml]	3120				Enterococci	2000	3433 3	<1	<1	<1	<1
Enterococci	1690	1940	<10	<10		6300	5155,5	<1		<1	·-
	2300				[MPN/1 g]	0300		<1 11		1	
[MPN/100ml]	700					2000		<1		<1	

MPN- the most probable number

Marine organisms

Nodularia spumigena : control sample (A), after irradiation (B)

Sludge treatment

Biological threats in sewage sludge

• Pathogenic bacteria

(Salmonella spp., Clostridium perfrigens, Escherichia Coli...)

• Helminths eggs

(Toxocara spp., Trichuris spp., Ascaris spp, Taenia spp....)

 \circ Viruses

• Fungi

Sludge treatment

Influence of ionizing radiation on living organisms

Scheme of EB sewage sludge hygienization installation

IAEA Collaborating Centre

Control

Sludge based biofertilizer

Sludge treatment

Dose (kGy)	Detected Species	Result (CFU)
87	Escherichia coli,	$6.2 imes 10^4$
0	Salmonella spp.	9.2×10^{2}
	Clostridium perfringens	$1.1 imes10^2$
<u>1</u>	Escherichia coli,	$9.8 imes 10^3$
2	Salmonella spp.	1.3×10^2
	Clostridium perfringens	$0.9 imes10^2$
	Escherichia coli,	$1.4 imes 10^2$
3	Salmonella spp.	0.4×10^2
	Clostridium perfringens	$ca.0.2 \times 10^2$
	Escherichia coli,	none detected
4	Salmonella spp.	none detected
	Clostridium perfringens	none detected
	Escherichia coli,	none detected
5	Salmonella spp.	none detected
	Clostridium perfringens	none detected

Dose (kGy)	Detected Species	Result (Number of Living Eggs)
	Ascaris spp.	17
0	Trichuris spp.	4
	Toxocara spp.	2
	Ascaris spp.	11
2	Trichuris spp.	1
	Toxocara spp.	none detected
	Ascaris spp.	3
3	Trichuris spp.	none detected
	Toxocara spp.	none detected
lí	Ascaris spp.	none detected
4	Trichuris spp.	none detected
	Toxocara spp.	none detected
	Ascaris spp.	none detected
5	Trichuris spp.	none detected
	Toxocara spp.	none detected

Source: Kim Y, Han B, Kim JK, Ben Yaacov N, Jeong KY, 2009. Design of electron beam sludge hygienization plant. In: International topical

meeting on nuclear research applications and utilization of accelerators.

Source: Sudlitz, M.; Chmielewski, A.G. A Method for WWTP Sludge Valorization through Hygienization by Electron Beam Treatment. Fermentation 2021, 7, 302.

https://doi.org/10.3390/fermentation7040302

Biogas production using sewage sludge

treatment

- Institute of Nuclear Chemistry and Technicacy IAEA Collaborating Centre for Reliation Processing and Industrial Das imetry 28 - 394
- The sludge is pumped into the anaerobic reactors where digestion takes place, usually at mesophilic temperature (35 – 39 °C). During a retention time of around 20 days, microorganisms break down part of the organic matter that is contained in the sludge and they produce biogas, which is composed of methane, carbon dioxide and trace gases. Biogas is used to feed cogeneration systems in order to simultaneously produce heat and electricity.

Advantage of proposed solution:

- Environmental friendly technology
- Biogas production is disposal of problematic wastes
- Production of renewable power through combined heat and power cogeneration
- Production of microbiologically safe organic fertilizer due to electron beam hygenization
- Technology can be applied in any place with sufficient biomass resources while there is no need for external electric energy supply

Economic analysis

Was (Throughput: ∼250 000 m³ ann	tewater treatment plant ually. Sludge output ~1500 tons dry mass annually)
I. E-beam technology for sludge hygenization	II. E-beam technology for sludge hygenization and biogas cogeneration
Ac	celerator specification
100 kW, 2 MeV	100 kW, 2 MeV + biogas generation
Savings from	Cost savings n avoiding sludge disposal costs
1500 tons @ 100 euros = 150 000 euros	1500 tons @ 100 euros = 150 000 euros
Potential revenu	e from biosolid-based fertilizer sales
1500 tons @ 94.5 euros = 141 750 euros	1277.5 tons @ 94.5 euros = 120 723.75 euros
	Biogas production (1 022 000 m ³ annually) Converted in co-generator in electricity and heat Generator power 350 kW Equivalent of electricity production: 350 kW × 8000 h × 0.13 euros/kWh = 354 000 euros
E-beam techn El	nology-associated operating costs ectricity consumption
130 kW e-beam accelerator 70 kW wastewater plant equipment 10 kW heat generation	130 kW e-beam accelerator 70 kW wastewater plant equipment
	Total cost
210 kW × 8000 h × 0.13 euros/kwh = 218 400 euros	$200 \text{ kW} \times 8000 \text{ h} \times 0.13 \text{ euros/kwh} = 208 000 \text{ euros}$ 1055 tons grass silage (annually) = 1 055 tons × 10 euros/ton = 10 055 euros
N	et income and savings
73 350 euros annually	271 668.75 euros annually

Source: Chmielewski, Andrzej G., Sudlitz, Marcin, Han, Bumsoo and Pillai, Suresh D.. "Electron beam technology for biogas and biofertilizer generation at municipal resource recovery facilities" Nukleonika, vol.66, no.4, 2021, pp.213-219. https://doi.org/10.2478/nuka-2021-0031

Ship diesel off-gases treatment

Exhaust gases vs regulations

Diesel engine: 6 MW, 85% engine load	Exhaust gas: 4.727 Nm³/kWh NO: 1500 ppmv, 9.5g/kWh	Regulations of NOx emissions (Tier III) 315 ppmv, 2g/kWh	The removal has to be higher than 79%

Diesei e	composition
NOx	50-1500 ppm
SO2	Proportional to sulphur content in fuel; 500-2000 ppm

50-500 ppm

100-1000 ppm

HC

CO

Diagol ongino oxhquet gao

Ship diesel off-gases treatment

Ship diesel off-gases treatment

Hybrid technology

NaClO₂ solution

25

- The electron beam is an important technique for environmental protection applications.
- Progress = not only a growing number of units but also lower cost, higier accelerator electrical efficiency, accelaretor reability, more compact size suitable for production lines, beams shaped adequately for the process, and other parameters that are important in the radiation-processing application