ELECTRON BEAM TREATMENT AS A FUTURE ECO-TECHNOLOGY FOR MICROPLASTICS REMOVAL IMPROVEMENT IN WASTEWATER AND SEWAGE SLUDGE

Malgorzata Siwek, Thomas Edgecock, Hayley Markham, Andrzej G. Chmielewski, Andrzej Rafalski, Marta Walo, Marcin Sudlitz, Long Lin, Yufa Sun

*University of Huddersfield, HD1 3DH, Queensgate, Huddersfield, West Yorkshire, United Kingdom; \(^{1}\)Institute of Nuclear Chemistry and Technology, 03195, 16 Dorodna St, Warsaw, Poland; \(^{2}\)University of Leeds, LS2 9JZ, Woodhouse Lane, Leeds, West Yorkshire, United Kingdom. Corresponding email address: malgorzata.siwek@hud.ac.uk

I. THE MECHANISM OF THE ELECTRON BEAM ACTION

DIRECT: damage to DNA and RNA

INDIRECT: production of large quantities of reactive species

\[\text{H}_2\text{O} \rightarrow \text{OH}^\bullet + \text{e}_\text{aq} + \text{H}^+ + \text{H}_2\text{O}^+ + \text{H}_2 + \text{H}_2\text{O}_2 \]

Oxidising agents: \(E(V(\text{OH}^\bullet + \text{H}_2\text{O})) = -2.72 \text{V} \)

Reducing agents: \(E(V(\text{H}_2\text{O}^+ + \text{H}^+)) = -2.9 \text{V} \) and \(E(V(\text{H}^+ + \text{e}^-)) = -2.3 \text{V} \)

Table 1

<table>
<thead>
<tr>
<th>pH</th>
<th>Water radiolysis products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OH(^\bullet)</td>
</tr>
<tr>
<td>1</td>
<td>2.9</td>
</tr>
<tr>
<td>10</td>
<td>2.8</td>
</tr>
</tbody>
</table>

II. POLYMER STRUCTURE CHANGES

Molecular Weight Decrease

- Polymer molecular weight inversely proportional to irradiation dose

Thermal stability changes

- Before (left) and after (right)

III. MICROPLASTICS SEDIMENTATION PROPERTIES IMPROVEMENT

Induced plastic sedimentation

Density increase

87% of sinking PS plastic after the irradiation at 56kGy compared to 13% of non-treated sample

IV. MICROPLASTICS DEGRADATION

Plastics mass loss

- Partial plasticizer removal

Plastics discoloration

- Plastic yellowing

V. CONCLUSIONS

Electron beam treatment is a potential future tool for ecological, risk-free treatment of contamination in wastewater and sewage sludge, capable of microplastics modifications, removal (by coagulation and sedimentation) efficiency improvement and plasticizer extraction.